Low-bias gate tunable terahertz plasmonic signatures in chemical vapour deposited graphene of varying grain size
We report the characterization of centimeter sized graphene field-effect transistors with ionic gating which enables active frequency and amplitude modulation of terahertz (THz) radiation. Chemical vapour deposited graphene with different grain sizes were studied using THz time-domain spectroscopy....
Main Authors: | , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2018
|
Online Access: | http://hdl.handle.net/1721.1/114643 https://orcid.org/0000-0003-1546-5014 |
Summary: | We report the characterization of centimeter sized graphene field-effect transistors with ionic gating which enables active frequency and amplitude modulation of terahertz (THz) radiation. Chemical vapour deposited graphene with different grain sizes were studied using THz time-domain spectroscopy. We demonstrate that the plasmonic resonances intrinsic to graphene can be tuned over a wide range of THz frequencies by engineering the grain size of the graphene. Further frequency tuning of the resonance, up to ∼65 GHz, is achieved by electrostatic doping via ionic gating. These results present the first demonstration of tuning the intrinsic plasmonic resonances in graphene. |
---|