Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics

In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro mode...

Full description

Bibliographic Details
Main Authors: van der Valk, Dewy C., Blaser, Mark C., Grolman, Joshua M., Wu, Pin-Jou, Lee, Lang H., Wen, Jennifer R., Ha, Anna H., Buffolo, Fabrizio, van Mil, Alain, Bouten, Carlijn V. C., Body, Simon C., Mooney, David J., Sluijter, Joost P. G., Aikawa, Masanori, Hjortnaes, Jesper, Aikawa, Elena, van der Valk, Dewy, van der Ven, Casper, Blaser, Mark, Grolman, Joshua, Fenton, Owen, Lee, Lang, Tibbitt, Mark, Andresen, Jason, Wen, Jennifer, Ha, Anna, Bouten, Carlijn, Body, Simon, Mooney, David, Sluijter, Joost, van der Ven, Casper F.t., Tibbitt, Mark W, Langer, Robert S, Fenton, Owen Shea
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Published: MDPI AG 2018
Online Access:http://hdl.handle.net/1721.1/115860
https://orcid.org/0000-0002-5585-9280
https://orcid.org/0000-0002-4917-7187
https://orcid.org/0000-0003-4255-0492
_version_ 1826217954446934016
author van der Valk, Dewy C.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Lee, Lang H.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Aikawa, Elena
van der Valk, Dewy
van der Ven, Casper
Blaser, Mark
Grolman, Joshua
Fenton, Owen
Lee, Lang
Tibbitt, Mark
Andresen, Jason
Wen, Jennifer
Ha, Anna
Bouten, Carlijn
Body, Simon
Mooney, David
Sluijter, Joost
van der Ven, Casper F.t.
Tibbitt, Mark W
Langer, Robert S
Fenton, Owen Shea
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
van der Valk, Dewy C.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Lee, Lang H.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Aikawa, Elena
van der Valk, Dewy
van der Ven, Casper
Blaser, Mark
Grolman, Joshua
Fenton, Owen
Lee, Lang
Tibbitt, Mark
Andresen, Jason
Wen, Jennifer
Ha, Anna
Bouten, Carlijn
Body, Simon
Mooney, David
Sluijter, Joost
van der Ven, Casper F.t.
Tibbitt, Mark W
Langer, Robert S
Fenton, Owen Shea
author_sort van der Valk, Dewy C.
collection MIT
description In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD.
first_indexed 2024-09-23T17:11:21Z
format Article
id mit-1721.1/115860
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T17:11:21Z
publishDate 2018
publisher MDPI AG
record_format dspace
spelling mit-1721.1/1158602022-10-03T11:03:22Z Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics van der Valk, Dewy C. Blaser, Mark C. Grolman, Joshua M. Wu, Pin-Jou Lee, Lang H. Wen, Jennifer R. Ha, Anna H. Buffolo, Fabrizio van Mil, Alain Bouten, Carlijn V. C. Body, Simon C. Mooney, David J. Sluijter, Joost P. G. Aikawa, Masanori Hjortnaes, Jesper Aikawa, Elena van der Valk, Dewy van der Ven, Casper Blaser, Mark Grolman, Joshua Fenton, Owen Lee, Lang Tibbitt, Mark Andresen, Jason Wen, Jennifer Ha, Anna Bouten, Carlijn Body, Simon Mooney, David Sluijter, Joost van der Ven, Casper F.t. Tibbitt, Mark W Langer, Robert S Fenton, Owen Shea Massachusetts Institute of Technology. Department of Chemical Engineering Koch Institute for Integrative Cancer Research at MIT van der Ven, Casper F.t. Fenton, Owen S. Tibbitt, Mark W Andresen, Jason Langer, Robert S In calcific aortic valve disease (CAVD), microcalcifications originating from nanoscale calcifying vesicles disrupt the aortic valve (AV) leaflets, which consist of three (biomechanically) distinct layers: the fibrosa, spongiosa, and ventricularis. CAVD has no pharmacotherapy and lacks in vitro models as a result of complex valvular biomechanical features surrounding resident mechanosensitive valvular interstitial cells (VICs). We measured layer-specific mechanical properties of the human AV and engineered a three-dimensional (3D)-bioprinted CAVD model that recapitulates leaflet layer biomechanics for the first time. Human AV leaflet layers were separated by microdissection, and nanoindentation determined layer-specific Young’s moduli. Methacrylated gelatin (GelMA)/methacrylated hyaluronic acid (HAMA) hydrogels were tuned to duplicate layer-specific mechanical characteristics, followed by 3D-printing with encapsulated human VICs. Hydrogels were exposed to osteogenic media (OM) to induce microcalcification, and VIC pathogenesis was assessed by near infrared or immunofluorescence microscopy. Median Young’s moduli of the AV layers were 37.1, 15.4, and 26.9 kPa (fibrosa/spongiosa/ventricularis, respectively). The fibrosa and spongiosa Young’s moduli matched the 3D 5% GelMa/1% HAMA UV-crosslinked hydrogels. OM stimulation of VIC-laden bioprinted hydrogels induced microcalcification without apoptosis. We report the first layer-specific measurements of human AV moduli and a novel 3D-bioprinted CAVD model that potentiates microcalcification by mimicking the native AV mechanical environment. This work sheds light on valvular mechanobiology and could facilitate high-throughput drug-screening in CAVD. 2018-05-24T18:02:58Z 2018-05-24T18:02:58Z 2018-05 2018-04 2018-05-24T15:16:32Z Article http://purl.org/eprint/type/JournalArticle 2079-4991 http://hdl.handle.net/1721.1/115860 van der Valk, Dewy et al. "Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics." Nanomaterials 8, 5 (May 2018): 296 © 2018 The Authors https://orcid.org/0000-0002-5585-9280 https://orcid.org/0000-0002-4917-7187 https://orcid.org/0000-0003-4255-0492 http://dx.doi.org/10.3390/nano8050296 Nanomaterials Creative Commons Attribution http://creativecommons.org/licenses/by/4.0/ application/pdf MDPI AG Multidisciplinary Digital Publishing Institute
spellingShingle van der Valk, Dewy C.
Blaser, Mark C.
Grolman, Joshua M.
Wu, Pin-Jou
Lee, Lang H.
Wen, Jennifer R.
Ha, Anna H.
Buffolo, Fabrizio
van Mil, Alain
Bouten, Carlijn V. C.
Body, Simon C.
Mooney, David J.
Sluijter, Joost P. G.
Aikawa, Masanori
Hjortnaes, Jesper
Aikawa, Elena
van der Valk, Dewy
van der Ven, Casper
Blaser, Mark
Grolman, Joshua
Fenton, Owen
Lee, Lang
Tibbitt, Mark
Andresen, Jason
Wen, Jennifer
Ha, Anna
Bouten, Carlijn
Body, Simon
Mooney, David
Sluijter, Joost
van der Ven, Casper F.t.
Tibbitt, Mark W
Langer, Robert S
Fenton, Owen Shea
Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_full Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_fullStr Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_full_unstemmed Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_short Engineering a 3D-Bioprinted Model of Human Heart Valve Disease Using Nanoindentation-Based Biomechanics
title_sort engineering a 3d bioprinted model of human heart valve disease using nanoindentation based biomechanics
url http://hdl.handle.net/1721.1/115860
https://orcid.org/0000-0002-5585-9280
https://orcid.org/0000-0002-4917-7187
https://orcid.org/0000-0003-4255-0492
work_keys_str_mv AT vandervalkdewyc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT blasermarkc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT grolmanjoshuam engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT wupinjou engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT leelangh engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT wenjenniferr engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT haannah engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT buffolofabrizio engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vanmilalain engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT boutencarlijnvc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT bodysimonc engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT mooneydavidj engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT sluijterjoostpg engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT aikawamasanori engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT hjortnaesjesper engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT aikawaelena engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vandervalkdewy engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vandervencasper engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT blasermark engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT grolmanjoshua engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT fentonowen engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT leelang engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT tibbittmark engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT andresenjason engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT wenjennifer engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT haanna engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT boutencarlijn engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT bodysimon engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT mooneydavid engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT sluijterjoost engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT vandervencasperft engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT tibbittmarkw engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT langerroberts engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics
AT fentonowenshea engineeringa3dbioprintedmodelofhumanheartvalvediseaseusingnanoindentationbasedbiomechanics