Large and persistent photoconductivity due to hole-hole correlation in CdS

Large and persistent photoconductivity (LPPC) in semiconductors is due to the trapping of photogenerated minority carriers at crystal defects. Theory has suggested that anion vacancies in II-VI semiconductors are responsible for LPPC due to negative-U behavior, whereby two minority carriers become k...

Full description

Bibliographic Details
Main Authors: Yin, Han, Akey, Austin, Jaramillo, Rafael
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: American Physical Society 2018
Online Access:http://hdl.handle.net/1721.1/117334
https://orcid.org/0000-0001-6507-5140
https://orcid.org/0000-0003-3116-6719
Description
Summary:Large and persistent photoconductivity (LPPC) in semiconductors is due to the trapping of photogenerated minority carriers at crystal defects. Theory has suggested that anion vacancies in II-VI semiconductors are responsible for LPPC due to negative-U behavior, whereby two minority carriers become kinetically trapped by lattice relaxation following photoexcitation. By performing a detailed analysis of photoconductivity in CdS, we provide experimental support for this negative-U model of LPPC. We also show that LPPC is correlated with sulfur deficiency. We use this understanding to vary the photoconductivity of CdS films over nine orders of magnitude, and vary the LPPC characteristic decay time from seconds to 10⁴s by controlling the activities of Cd²⁺ and S²⁻ ions during chemical bath deposition. We suggest a screening method to identify other materials with long-lived, nonequilibrium, photoexcited states based on the results of ground-state calculations of atomic rearrangements following defect redox reactions, with a conceptual connection to polaron formation.