In vitro synthesis of gene-length single-stranded DNA
Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Published: |
Nature Publishing Group
2018
|
Online Access: | http://hdl.handle.net/1721.1/117554 https://orcid.org/0000-0002-2726-3770 https://orcid.org/0000-0001-7122-1917 https://orcid.org/0000-0002-1766-807X https://orcid.org/0000-0002-6199-6855 |
Summary: | Single-stranded DNA (ssDNA) increases the likelihood of homology directed repair with reduced cellular toxicity. However, ssDNA synthesis strategies are limited by the maximum length attainable, ranging from a few hundred nucleotides for chemical synthesis to a few thousand nucleotides for enzymatic synthesis, as well as limited control over nucleotide composition. Here, we apply purely enzymatic synthesis to generate ssDNA greater than 15 kilobases (kb) using asymmetric PCR, and illustrate the incorporation of diverse modified nucleotides for therapeutic and theranostic applications. |
---|