Building and controlling fluidically actuated soft robots : from open loop to model-based control

Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.

Bibliographic Details
Main Author: Katzschmann, Robert Kevin
Other Authors: Daniela L. Rus.
Format: Thesis
Language:eng
Published: Massachusetts Institute of Technology 2018
Subjects:
Online Access:http://hdl.handle.net/1721.1/119278
_version_ 1826195385070125056
author Katzschmann, Robert Kevin
author2 Daniela L. Rus.
author_facet Daniela L. Rus.
Katzschmann, Robert Kevin
author_sort Katzschmann, Robert Kevin
collection MIT
description Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018.
first_indexed 2024-09-23T10:11:50Z
format Thesis
id mit-1721.1/119278
institution Massachusetts Institute of Technology
language eng
last_indexed 2024-09-23T10:11:50Z
publishDate 2018
publisher Massachusetts Institute of Technology
record_format dspace
spelling mit-1721.1/1192782019-04-12T23:06:26Z Building and controlling fluidically actuated soft robots : from open loop to model-based control Katzschmann, Robert Kevin Daniela L. Rus. Massachusetts Institute of Technology. Department of Mechanical Engineering. Massachusetts Institute of Technology. Department of Mechanical Engineering. Mechanical Engineering. Thesis: Ph. D., Massachusetts Institute of Technology, Department of Mechanical Engineering, 2018. This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. Cataloged from student-submitted PDF version of thesis. Includes bibliographical references (pages 247-272). This thesis describes the creation and control of soft robots made of deformable elastomer materials and powered by fluidics. We embed soft fluidic actuators into self-contained soft robotic systems, such as fish for underwater exploration or soft arms for dynamic manipulation. We present models describing the physical characteristics of these continuously deformable and fully soft robots, and then leverage these models for motion planning and closed-loop feedback control in order to realize quasi-static manipulation, dynamic arm motions, and dynamic interactions with an environment. The design and fabrication techniques for our soft robots include the development of soft actuator morphologies, soft casting techniques, and closed-circuit pneumatic and hydraulic powering methods. With a modular design approach, we combine these soft actuator morphologies into robotic systems. We create a robotic fish for underwater locomotion, as well as multi-finger hands and multi-segment arms for use in object manipulation and interaction with an environment. The robotic fish uses a soft hydraulic actuator as its deformable tail to perform open-loop controlled swimming motions through cyclic undulation. The swimming movement is achieved by a custom-made displacement pump and a custom-made buoyancy control unit, all embedded within the soft robotic fish. The fish robot receives high-level control commands via acoustic signals to move in marine environments. The control of the multi-segment arms is enabled by models describing the geometry, kinematics, impedance, and dynamics. We use the models for quasi-static closed-loop control and dynamic closed-loop control. The quasi-static controllers work in combination with the kinematic models and geometric motion planners to enable the soft arms to move in confined spaces, and to autonomously perform object grasping. Leveraging the models for impedance and dynamics, we also demonstrate dynamic arm motions and end-effector interactions of the arm with an environment. Our dynamic model allows the application of control techniques developed for rigid robots to the dynamic control of soft robots. The resulting model-based closed-loop controllers enable dynamic curvature tracking as well as surface tracing in Cartesian space. by Robert Kevin Katzschmann. Ph. D. 2018-11-28T15:25:41Z 2018-11-28T15:25:41Z 2018 2018 Thesis http://hdl.handle.net/1721.1/119278 1065538334 eng MIT theses are protected by copyright. They may be viewed, downloaded, or printed from this source but further reproduction or distribution in any format is prohibited without written permission. http://dspace.mit.edu/handle/1721.1/7582 272 pages application/pdf Massachusetts Institute of Technology
spellingShingle Mechanical Engineering.
Katzschmann, Robert Kevin
Building and controlling fluidically actuated soft robots : from open loop to model-based control
title Building and controlling fluidically actuated soft robots : from open loop to model-based control
title_full Building and controlling fluidically actuated soft robots : from open loop to model-based control
title_fullStr Building and controlling fluidically actuated soft robots : from open loop to model-based control
title_full_unstemmed Building and controlling fluidically actuated soft robots : from open loop to model-based control
title_short Building and controlling fluidically actuated soft robots : from open loop to model-based control
title_sort building and controlling fluidically actuated soft robots from open loop to model based control
topic Mechanical Engineering.
url http://hdl.handle.net/1721.1/119278
work_keys_str_mv AT katzschmannrobertkevin buildingandcontrollingfluidicallyactuatedsoftrobotsfromopenlooptomodelbasedcontrol