Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes

The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-re...

Full description

Bibliographic Details
Main Authors: Chan, Sze Ham, Freinkman, Elizaveta, Abu-Remaileh, Monther, Wyant, Gregory Andrew, Kim, Choah, Laqtom, Nouf N, Abbasi, Maria, Sabatini, David
Other Authors: Massachusetts Institute of Technology. Department of Biology
Format: Article
Published: American Association for the Advancement of Science (AAAS) 2019
Online Access:http://hdl.handle.net/1721.1/119871
https://orcid.org/0000-0003-4642-3706
https://orcid.org/0000-0002-1446-7256
_version_ 1826210194590269440
author Chan, Sze Ham
Freinkman, Elizaveta
Abu-Remaileh, Monther
Wyant, Gregory Andrew
Kim, Choah
Laqtom, Nouf N
Abbasi, Maria
Sabatini, David
author2 Massachusetts Institute of Technology. Department of Biology
author_facet Massachusetts Institute of Technology. Department of Biology
Chan, Sze Ham
Freinkman, Elizaveta
Abu-Remaileh, Monther
Wyant, Gregory Andrew
Kim, Choah
Laqtom, Nouf N
Abbasi, Maria
Sabatini, David
author_sort Chan, Sze Ham
collection MIT
description The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H+–adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux.
first_indexed 2024-09-23T14:45:25Z
format Article
id mit-1721.1/119871
institution Massachusetts Institute of Technology
last_indexed 2024-09-23T14:45:25Z
publishDate 2019
publisher American Association for the Advancement of Science (AAAS)
record_format dspace
spelling mit-1721.1/1198712022-09-29T10:23:35Z Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes Chan, Sze Ham Freinkman, Elizaveta Abu-Remaileh, Monther Wyant, Gregory Andrew Kim, Choah Laqtom, Nouf N Abbasi, Maria Sabatini, David Massachusetts Institute of Technology. Department of Biology Koch Institute for Integrative Cancer Research at MIT Abu-Remaileh, Monther Wyant, Gregory Andrew Kim, Choah Laqtom, Nouf N Abbasi, Maria Sabatini, David The lysosome degrades and recycles macromolecules, signals to the cytosol and nucleus, and is implicated in many diseases. Here, we describe a method for the rapid isolation of mammalian lysosomes and use it to quantitatively profile lysosomal metabolites under various cell states. Under nutrient-replete conditions, many lysosomal amino acids are in rapid exchange with those in the cytosol. Loss of lysosomal acidification through inhibition of the vacuolar H+–adenosine triphosphatase (V-ATPase) increased the luminal concentrations of most metabolites but had no effect on those of the majority of essential amino acids. Instead, nutrient starvation regulates the lysosomal concentrations of these amino acids, an effect we traced to regulation of the mechanistic target of rapamycin (mTOR) pathway. Inhibition of mTOR strongly reduced the lysosomal efflux of most essential amino acids, converting the lysosome into a cellular depot for them. These results reveal the dynamic nature of lysosomal metabolites and that V-ATPase- and mTOR-dependent mechanisms exist for controlling lysosomal amino acid efflux. 2019-01-08T16:18:33Z 2019-01-08T16:18:33Z 2017-11 2017-05 2018-12-19T15:31:26Z Article http://purl.org/eprint/type/JournalArticle 0036-8075 1095-9203 http://hdl.handle.net/1721.1/119871 Abu-Remaileh, Monther et al. “Lysosomal Metabolomics Reveals V-ATPase- and mTOR-Dependent Regulation of Amino Acid Efflux from Lysosomes.” Science 358, 6364 (October 2017): 807–813 © 2017 American Association for the Advancement of Science https://orcid.org/0000-0003-4642-3706 https://orcid.org/0000-0002-1446-7256 http://dx.doi.org/10.1126/SCIENCE.AAN6298 Science Creative Commons Attribution-Noncommercial-Share Alike http://creativecommons.org/licenses/by-nc-sa/4.0/ application/pdf American Association for the Advancement of Science (AAAS) PMC
spellingShingle Chan, Sze Ham
Freinkman, Elizaveta
Abu-Remaileh, Monther
Wyant, Gregory Andrew
Kim, Choah
Laqtom, Nouf N
Abbasi, Maria
Sabatini, David
Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title_full Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title_fullStr Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title_full_unstemmed Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title_short Lysosomal metabolomics reveals V-ATPase- and mTOR-dependent regulation of amino acid efflux from lysosomes
title_sort lysosomal metabolomics reveals v atpase and mtor dependent regulation of amino acid efflux from lysosomes
url http://hdl.handle.net/1721.1/119871
https://orcid.org/0000-0003-4642-3706
https://orcid.org/0000-0002-1446-7256
work_keys_str_mv AT chanszeham lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT freinkmanelizaveta lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT aburemailehmonther lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT wyantgregoryandrew lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT kimchoah lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT laqtomnoufn lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT abbasimaria lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes
AT sabatinidavid lysosomalmetabolomicsrevealsvatpaseandmtordependentregulationofaminoacideffluxfromlysosomes