Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides
Lateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transit...
Main Authors: | , , , , , , , , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Chemical Society (ACS)
2019
|
Online Access: | https://hdl.handle.net/1721.1/121574 |
_version_ | 1826197470421450752 |
---|---|
author | Leong, Wei Sun Ji, Qingqing Mao, Nannan Wang, Haozhe Goodman, Aaron Jacob Vignon, Mikpongbeho Antoine Su, Cong Guo, Yunfan Shen, Pin-Chun Gao, Zhenfei Tisdale, William Muller, David A. Kong, Jing |
author2 | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science |
author_facet | Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Leong, Wei Sun Ji, Qingqing Mao, Nannan Wang, Haozhe Goodman, Aaron Jacob Vignon, Mikpongbeho Antoine Su, Cong Guo, Yunfan Shen, Pin-Chun Gao, Zhenfei Tisdale, William Muller, David A. Kong, Jing |
author_sort | Leong, Wei Sun |
collection | MIT |
description | Lateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transition metal disulfide (TMD) layers. Instead of edge epitaxy, polycrystalline monolayer MoS₂ in such junctions was revealed to nucleate from the vertices of multilayered VS₂ crystals, creating one-dimensional junctions with ultralow contact resistance (0.5 kΩ·μm). This lateral contact contributes to 6-fold improved field-effect mobility for monolayer MoS₂, compared to the conventional on-top nickel contacts. The all-CVD strategy presented here hence opens up a new avenue for all-2D-based synthetic electronics. |
first_indexed | 2024-09-23T10:48:30Z |
format | Article |
id | mit-1721.1/121574 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T10:48:30Z |
publishDate | 2019 |
publisher | American Chemical Society (ACS) |
record_format | dspace |
spelling | mit-1721.1/1215742022-09-30T23:10:54Z Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides Leong, Wei Sun Ji, Qingqing Mao, Nannan Wang, Haozhe Goodman, Aaron Jacob Vignon, Mikpongbeho Antoine Su, Cong Guo, Yunfan Shen, Pin-Chun Gao, Zhenfei Tisdale, William Muller, David A. Kong, Jing Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology. Research Laboratory of Electronics Massachusetts Institute of Technology. Department of Chemistry Massachusetts Institute of Technology. Department of Chemical Engineering Massachusetts Institute of Technology. Department of Nuclear Science and Engineering Massachusetts Institute of Technology. Department of Materials Science and Engineering Lateral heterostructures with planar integrity form the basis of two-dimensional (2D) electronics and optoelectronics. Here we report that, through a two-step chemical vapor deposition (CVD) process, high-quality lateral heterostructures can be constructed between metallic and semiconducting transition metal disulfide (TMD) layers. Instead of edge epitaxy, polycrystalline monolayer MoS₂ in such junctions was revealed to nucleate from the vertices of multilayered VS₂ crystals, creating one-dimensional junctions with ultralow contact resistance (0.5 kΩ·μm). This lateral contact contributes to 6-fold improved field-effect mobility for monolayer MoS₂, compared to the conventional on-top nickel contacts. The all-CVD strategy presented here hence opens up a new avenue for all-2D-based synthetic electronics. Air Force Office of Scientific Research (Grant FA9550-15-1-0514) National Science Foundation (U.S.) (Grant EFRI-1542815) National Science Foundation (U.S.) (Grant DMR-1507806) National Science Foundation (U.S.) (Grant DMR/ECCS-1509197) National Science Foundation (U.S.) (Award 0939514) United States. Department of Energy (Grant DE-SC0010538) 2019-07-10T18:12:43Z 2019-07-10T18:12:43Z 2018-09-20 2018-07 2019-06-26T18:25:41Z Article http://purl.org/eprint/type/JournalArticle 0002-7863 1520-5126 https://hdl.handle.net/1721.1/121574 Leong, Wei Sun et al. "Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides." Journal of the American Chemical Society 140, 39 (September 2018): 12354-12358 © 2018 American Chemical Society en http://dx.doi.org/10.1021/jacs.8b07806 Journal of the American Chemical Society Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Chemical Society (ACS) Other repository |
spellingShingle | Leong, Wei Sun Ji, Qingqing Mao, Nannan Wang, Haozhe Goodman, Aaron Jacob Vignon, Mikpongbeho Antoine Su, Cong Guo, Yunfan Shen, Pin-Chun Gao, Zhenfei Tisdale, William Muller, David A. Kong, Jing Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title | Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title_full | Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title_fullStr | Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title_full_unstemmed | Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title_short | Synthetic Lateral Metal-Semiconductor Heterostructures of Transition Metal Disulfides |
title_sort | synthetic lateral metal semiconductor heterostructures of transition metal disulfides |
url | https://hdl.handle.net/1721.1/121574 |
work_keys_str_mv | AT leongweisun syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT jiqingqing syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT maonannan syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT wanghaozhe syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT goodmanaaronjacob syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT vignonmikpongbehoantoine syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT sucong syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT guoyunfan syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT shenpinchun syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT gaozhenfei syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT tisdalewilliam syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT mullerdavida syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides AT kongjing syntheticlateralmetalsemiconductorheterostructuresoftransitionmetaldisulfides |