GeneSIS-Rt: Generating Synthetic Images for Training Secondary Real-World Tasks
We propose a novel approach for generating high-quality, synthetic data for domain-specific learning tasks, for which training data may not be readily available. We leverage recent progress in image-to-image translation to bridge the gap between simulated and real images, allowing us to generate rea...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2020
|
Online Access: | https://hdl.handle.net/1721.1/125861 |