Tight certificates of adversarial robustness for randomly smoothed classifiers
Strong theoretical guarantees of robustness can be given for ensembles of classifiers generated by input randomization. Specifically, an `2 bounded adversary cannot alter the ensemble prediction generated by an additive isotropic Gaussian noise, where the radius for the adversary depends on both the...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Online Access: | https://hdl.handle.net/1721.1/129439 |