Learning from HIV-1 to predict the immunogenicity of T cell epitopes in SARS-COV-2

We describe a physics-based learning model for predicting the immunogenicity of Cytotoxic-T-Lymphocyte (CTL) epitopes derived from diverse pathogens including SARS-CoV-2. The model was trained and optimized on the relative immunodominance of CTL epitopes in Human Immunodeficiency Virus infection. It...

Πλήρης περιγραφή

Λεπτομέρειες βιβλιογραφικής εγγραφής
Κύριοι συγγραφείς: Gao, Ang, Amitai, Assaf, Doelger, Julia, Chakraborty, Arup K, Julg, Boris D.
Άλλοι συγγραφείς: Massachusetts Institute of Technology. Department of Mechanical Engineering
Μορφή: Άρθρο
Γλώσσα:English
Έκδοση: Elsevier BV 2021
Διαθέσιμο Online:https://hdl.handle.net/1721.1/130336