An information-theoretic approach to unsupervised feature selection for high-dimensional data

In this paper, we model the unsupervised learning of a sequence of observed data vector as a problem of extracting joint patterns among random variables. In particular, we formulate an information-theoretic problem to extract common features of random variables by measuring the loss of total correla...

Ամբողջական նկարագրություն

Մատենագիտական մանրամասներ
Հիմնական հեղինակներ: Huang, Shao-Lun, Zhang, Lin, Zheng, Lizhong
Այլ հեղինակներ: Massachusetts Institute of Technology. Department of Electrical Engineering and Computer Science
Ձևաչափ: Հոդված
Լեզու:English
Հրապարակվել է: Institute of Electrical and Electronics Engineers (IEEE) 2021
Առցանց հասանելիություն:https://hdl.handle.net/1721.1/131015