Euclidean Forward–Reverse Brascamp–Lieb Inequalities: Finiteness, Structure, and Extremals
Abstract A new proof is given for the fact that centered Gaussian functions saturate the Euclidean forward–reverse Brascamp–Lieb inequalities, extending the Brascamp–Lieb and Barthe theorems. A duality principle for best constants is also developed, which generalizes the fact that the...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer US
2021
|
Online Access: | https://hdl.handle.net/1721.1/132089 |