Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds
<jats:p>Many important applications, including robotics, data-center management, and process control, require planning action sequences in domains with continuous state and action spaces and discontinuous objective functions. Monte Carlo tree search (MCTS) is an effective strategy for planning...
Main Authors: | Kim, Beomjoon, Lee, Kyungjae, Lim, Sungbin, Kaelbling, Leslie, Lozano-Perez, Tomas |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado: |
Association for the Advancement of Artificial Intelligence (AAAI)
2021
|
Acceso en liña: | https://hdl.handle.net/1721.1/132316 |
Títulos similares
-
Monte Carlo Tree Search in Continuous Spaces Using Voronoi Optimistic Optimization with Regret Bounds
por: Kim, Beomjoon, et al.
Publicado: (2022) -
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
por: Kaelbling, Leslie P., et al.
Publicado: (2021) -
Regret bounds for meta Bayesian optimization with an unknown Gaussian process prior
por: Kaelbling, Leslie P., et al.
Publicado: (2022) -
PDDLStream: Integrating symbolic planners and blackbox samplers via optimistic adaptive planning
por: Garrett, Caelan Reed, et al.
Publicado: (2021) -
Guiding search in continuous state-action spaces by learning an action sampler from off-target search experience
por: Kaelbling, Leslie P., et al.
Publicado: (2021)