High level active n + doping of strained germanium through co-implantation and nanosecond pulsed laser melting

© 2018 Author(s). Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM),...

Full description

Bibliographic Details
Main Authors: Pastor, David, Gandhi, Hemi H, Monmeyran, Corentin P, Akey, Austin J, Milazzo, Ruggero, Cai, Yan, Napolitani, Enrico, Gwilliam, Russell M, Crowe, Iain F, Michel, Jurgen, Kimerling, LC, Agarwal, Anuradha, Mazur, Eric, Aziz, Michael J
Other Authors: Massachusetts Institute of Technology. Department of Materials Science and Engineering
Format: Article
Language:English
Published: AIP Publishing 2021
Online Access:https://hdl.handle.net/1721.1/135024
Description
Summary:© 2018 Author(s). Obtaining high level active n+ carrier concentrations in germanium (Ge) has been a significant challenge for further development of Ge devices. By ion implanting phosphorus (P) and fluorine (F) into Ge and restoring crystallinity using Nd:YAG nanosecond pulsed laser melting (PLM), we demonstrate 1020 cm-3 n+ carrier concentration in tensile-strained epitaxial germanium-on-silicon. Scanning electron microscopy shows that after laser treatment, samples implanted with P have an ablated surface, whereas P + F co-implanted samples have good crystallinity and a smooth surface topography. We characterize P and F concentration depth profiles using secondary ion mass spectrometry and spreading resistance profiling. The peak carrier concentration, 1020 cm-3 at 80 nm below the surface, coincides with the peak F concentration, illustrating the key role of F in increasing donor activation. Cross-sectional transmission electron microscopy of the co-implanted sample shows that the Ge epilayer region damaged during implantation is a single crystal after PLM. High-resolution X-ray diffraction and Raman spectroscopy measurements both indicate that the as-grown epitaxial layer strain is preserved after PLM. These results demonstrate that co-implantation and PLM can achieve the combination of n+ carrier concentration and strain in Ge epilayers necessary for next-generation, high-performance Ge-on-Si devices.