Small ReLU networks are powerful memorizers: A tight analysis of memorization capacity
© 2019 Neural information processing systems foundation. All rights reserved. We study finite sample expressivity, i.e., memorization power of ReLU networks. Recent results require N hidden nodes to memorize/interpolate arbitrary N data points. In contrast, by exploiting depth, we show that 3-layer...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Online Access: | https://hdl.handle.net/1721.1/137480 |