On the Partition Function and Random Maximum A-Posteriori Perturbations
In this paper we relate the partition function to the max-statistics of random variables. In particular, we provide a novel framework for approximating and bounding the partition function using MAP inference on randomly perturbed models. As a result, we can use efficient MAP solvers such as graph-cu...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
2021
|
Online Access: | https://hdl.handle.net/1721.1/137613 |