Learning Gaze Transitions from Depth to Improve Video Saliency Estimation

© 2017 IEEE. In this paper we introduce a novel Depth-Aware Video Saliency approach to predict human focus of attention when viewing videos that contain a depth map (RGBD) on a 2D screen. Saliency estimation in this scenario is highly important since in the near future 3D video content will be easil...

Description complète

Détails bibliographiques
Auteurs principaux: Leifman, George, Rudoy, Dmitry, Swedish, Tristan, Bayro-Corrochano, Eduardo, Raskar, Ramesh
Autres auteurs: Massachusetts Institute of Technology. Media Laboratory
Format: Article
Langue:English
Publié: Institute of Electrical and Electronics Engineers (IEEE) 2021
Accès en ligne:https://hdl.handle.net/1721.1/138091