Beyond UCB: Optimal and Efficient Contextual Bandits with Regression Oracles

A fundamental challenge in contextual bandits is to develop flexible, general-purpose algorithms with computational requirements no worse than classical supervised learning tasks such as classification and regression. Algorithms based on regression have shown promising empirical success, but theoret...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Foster, Dylan J, Rakhlin, Alexander
Övriga upphovsmän: Statistics and Data Science Center (Massachusetts Institute of Technology)
Materialtyp: Artikel
Språk:English
Publicerad: 2021
Länkar:https://hdl.handle.net/1721.1/138306