Understanding and Estimating the Adaptability of Domain-Invariant Representations
When the test distribution differs from the training distribution, machine learning models can perform poorly and wrongly overestimate their performance. In this work, we aim to better estimate the model’s performance under distribution shift, without supervision. To do so, we use a set of domain-in...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2022
|
Online Access: | https://hdl.handle.net/1721.1/139150 |