Provable Algorithms for Learning and Variational Inference in Undirected Graphical Models
Graphical models are a general-purpose tool for modeling complex distributions in a way which facilitates probabilistic reasoning, with numerous applications across machine learning and the sciences. This thesis deals with algorithmic and statistical problems of learning a high-dimensional graphical...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2022
|
Online Access: | https://hdl.handle.net/1721.1/139373 |