Neural Stochastic Contraction Metrics for Learning-based Control and Estimation
We present Neural Stochastic Contraction Metrics (NSCM), a new design framework for provably-stable learning-based control and estimation for a class of stochastic nonlinear systems. It uses a spectrally-normalized deep neural network to construct a contraction metric and its differential Lyapunov f...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2022
|
Online Access: | https://hdl.handle.net/1721.1/139679 |