Maximal Correlation Feature Selection and Suppression With Applications
In standard supervised learning, we assume that we are trying to learn some target variable 𝑌 from some data 𝑋. However, many learning problems can be framed as supervised learning with an auxiliary objective, often associated with an auxiliary variable 𝐷 which defines this objective. Applying the p...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2022
|
Online Access: | https://hdl.handle.net/1721.1/140035 |