Machine-learning nonconservative dynamics for new-physics detection
Energy conservation is a basic physics principle, the breakdown of which often implies new physics. This paper presents a method for data-driven "new physics" discovery. Specifically, given a trajectory governed by unknown forces, our neural new-physics detector (NNPhD) aims to detect new...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
American Physical Society (APS)
2022
|
Online Access: | https://hdl.handle.net/1721.1/142232 |