Self-Training and Calibration for Learning with Limited Data
Semi-supervised learning methods such as self-training are able to leverage unlabeled data, which is widely available, as opposed to only using labeled data like many successful supervised learning methods. One part of self-training is to use a trained model to create pseudo-labels for unlabeled dat...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2022
|
Online Access: | https://hdl.handle.net/1721.1/144511 |