Towards More Generalizable Neural Networks via Modularity
Artificial neural networks have become highly effective at performing specific, challenging tasks by leveraging a large amount of training data. However, they are unable to generalize to diverse, unseen domains without requiring significant retraining. This thesis quantifies the generalization diffi...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2022
|
Online Access: | https://hdl.handle.net/1721.1/144929 |