Skip to content
VuFind
    • English
    • Deutsch
    • Español
    • Français
    • Italiano
    • 日本語
    • Nederlands
    • Português
    • Português (Brasil)
    • 中文(简体)
    • 中文(繁體)
    • Türkçe
    • עברית
    • Gaeilge
    • Cymraeg
    • Ελληνικά
    • Català
    • Euskara
    • Русский
    • Čeština
    • Suomi
    • Svenska
    • polski
    • Dansk
    • slovenščina
    • اللغة العربية
    • বাংলা
    • Galego
    • Tiếng Việt
    • Hrvatski
    • हिंदी
    • Հայերէն
    • Українська
    • Sámegiella
    • Монгол
Advanced
  • On approximability of satisfia...
  • Cite this
  • Text this
  • Email this
  • Print
  • Export Record
    • Export to RefWorks
    • Export to EndNoteWeb
    • Export to EndNote
  • Permanent link
On approximability of satisfiable k -CSPs: I

On approximability of satisfiable k -CSPs: I

Bibliographic Details
Main Authors: Bhangale, Amey, Khot, Subhash, Minzer, Dor
Other Authors: Massachusetts Institute of Technology. Department of Mathematics
Format: Article
Language:English
Published: Association for Computing Machinery (ACM) 2022
Online Access:https://hdl.handle.net/1721.1/145803
  • Holdings
  • Description
  • Similar Items
  • Staff View

Internet

https://hdl.handle.net/1721.1/145803

Similar Items

  • On Approximability of Satisfiable k-CSPs: II
    by: Bhangale, Amey, et al.
    Published: (2023)
  • On Approximability of Satisfiable k-CSPs: III
    by: Bhangale, Amey, et al.
    Published: (2023)
  • Effective Bounds for Restricted $3$-Arithmetic Progressions in $\mathbb{F}_p^n$
    by: Amey Bhangale, et al.
    Published: (2024-12-01)
  • The complexity of counting locally maximal satisfying assignments of Boolean CSPs
    by: Goldberg, L, et al.
    Published: (2016)
  • Pliability and approximating max-CSPs
    by: Romero, M, et al.
    Published: (2023)

Search Options

  • Search History
  • Advanced Search

Find More

  • Browse the Catalog
  • Browse Alphabetically
  • Explore Channels
  • Course Reserves
  • New Items

Need Help?

  • Search Tips
  • Ask a Librarian
  • FAQs