Modulating the evolutionary trajectory of tolerance using antibiotics with different metabolic dependencies

<jats:title>Abstract</jats:title><jats:p>Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are often characterized by a low metabolic state, agai...

Full description

Bibliographic Details
Main Authors: Zheng, Erica J, Andrews, Ian W, Grote, Alexandra T, Manson, Abigail L, Alcantar, Miguel A, Earl, Ashlee M, Collins, James J
Other Authors: Massachusetts Institute of Technology. Department of Biological Engineering
Format: Article
Language:English
Published: Springer Science and Business Media LLC 2023
Online Access:https://hdl.handle.net/1721.1/147786
Description
Summary:<jats:title>Abstract</jats:title><jats:p>Antibiotic tolerance, or the ability of bacteria to survive antibiotic treatment in the absence of genetic resistance, has been linked to chronic and recurrent infections. Tolerant cells are often characterized by a low metabolic state, against which most clinically used antibiotics are ineffective. Here, we show that tolerance readily evolves against antibiotics that are strongly dependent on bacterial metabolism, but does not arise against antibiotics whose efficacy is only minimally affected by metabolic state. We identify a mechanism of tolerance evolution in <jats:italic>E. coli</jats:italic> involving deletion of the sodium-proton antiporter gene <jats:italic>nhaA</jats:italic>, which results in downregulated metabolism and upregulated stress responses. Additionally, we find that cycling of antibiotics with different metabolic dependencies interrupts evolution of tolerance in vitro, increasing the lifetime of treatment efficacy. Our work highlights the potential for limiting the occurrence and extent of tolerance by accounting for antibiotic dependencies on bacterial metabolism.</jats:p>