A new perspective on low-rank optimization
Abstract A key question in many low-rank problems throughout optimization, machine learning, and statistics is to characterize the convex hulls of simple low-rank sets and judiciously apply these convex hulls to obtain strong yet computationally tractable relaxations. We invoke the matr...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer Berlin Heidelberg
2023
|
Online Access: | https://hdl.handle.net/1721.1/148128 |