A New Approach to Learning Linear Dynamical Systems
Egile Nagusiak: | Bakshi, Ainesh, Liu, Allen, Moitra, Ankur, Yau, Morris |
---|---|
Beste egile batzuk: | Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory |
Formatua: | Artikulua |
Hizkuntza: | English |
Argitaratua: |
ACM|Proceedings of the 55th Annual ACM Symposium on Theory of Computing
2023
|
Sarrera elektronikoa: | https://hdl.handle.net/1721.1/151057 |
Antzeko izenburuak
-
Learning Quantum Hamiltonians at Any Temperature in Polynomial Time
nork: Bakshi, Ainesh, et al.
Argitaratua: (2024) -
Robustly Learning General Mixtures of Gaussians
nork: Liu, Allen, et al.
Argitaratua: (2023) -
Exploring and Learning in Sparse Linear MDPs without Computationally Intractable Oracles
nork: Golowich, Noah, et al.
Argitaratua: (2024) -
New algorithms for learning incoherent and overcomplete dictionaries
nork: Arora, Sanjeev, et al.
Argitaratua: (2016) -
Improved bounds for randomly sampling colorings via linear programming
nork: Moitra, Ankur, et al.
Argitaratua: (2021)