SCA: recovering single-cell heterogeneity through information-based dimensionality reduction
Abstract Dimensionality reduction summarizes the complex transcriptomic landscape of single-cell datasets for downstream analyses. Current approaches favor large cellular populations defined by many genes, at the expense of smaller and more subtly defined populations. Here, we present...
Main Authors: | , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
BioMed Central
2023
|
Online Access: | https://hdl.handle.net/1721.1/152252 |