Permutation-based Significance Tests for Multi-modal Hierarchical Dirichlet Processes with Application to Audio-visual Data

Complex underlying distributions in multi-modal data motivate the need for data fusion methods that integrate observations of different modalities in a meaningful way. We explore the multi-modal hierarchical Dirichlet process (mmHDP) mixture model as a Bayesian non-parametric approach to data fusion...

全面介绍

书目详细资料
主要作者: Anderson, Madeline Loui
其他作者: Fisher III, John W.
格式: Thesis
出版: Massachusetts Institute of Technology 2023
在线阅读:https://hdl.handle.net/1721.1/152853