Holistic deep learning
This paper presents a novel holistic deep learning framework that simultaneously addresses the challenges of vulnerability to input perturbations, overparametrization, and performance instability from different train-validation splits. The proposed framework holistically improves accuracy, robustnes...
Main Authors: | , , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | English |
Published: |
Springer US
2023
|
Online Access: | https://hdl.handle.net/1721.1/153166 |