Model-based convolutional neural network approach to underwater source-range estimation
This paper is part of a special issue on machine learning in acoustics. A model-based convolutional neural network (CNN) approach is presented to test the viability of this method as an alternative to conventional matched-field processing (MFP) for underwater source-range estimation. The networks ar...
Autores principales: | , |
---|---|
Otros Autores: | |
Formato: | Artículo |
Lenguaje: | English |
Publicado: |
Acoustical Society of America
2024
|
Acceso en línea: | https://hdl.handle.net/1721.1/154268 |