Balancing Teacher Following and Reward Maximization in Reinforcement Learning
Learning from rewards (i.e., reinforcement learning or RL) and learning to imitate a teacher (i.e., teacher-student learning) are two established approaches for solving sequential decision-making problems. To combine the benefits of these different forms of learning, it is common to train a policy t...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2024
|
Online Access: | https://hdl.handle.net/1721.1/156290 |