Uncertainty-Inclusive Contrastive Learning for Leveraging Synthetic Images
Recent advancements in text-to-image generation models have sparked a growing interest in using synthesized training data to improve few-shot learning performance. Prevailing approaches treat all generated data as uniformly important, neglecting the fact that the quality of generated images varies a...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2024
|
Online Access: | https://hdl.handle.net/1721.1/157230 |