Optimization under ecological realism reproduces signatures of human speech perception
Recent advances in machine learning have made real-world perception tasks feasible for computers, in many cases approaching levels of performance similar to those of humans. In particular, optimizing models for ecologically realistic training datasets has helped to yield more human-like model result...
Main Author: | |
---|---|
Other Authors: | |
Format: | Thesis |
Published: |
Massachusetts Institute of Technology
2024
|
Online Access: | https://hdl.handle.net/1721.1/157565 |