Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer

Glioblastoma is characterized by heterogeneous malignant cells that are functionally integrated within the neuroglial microenvironment. Here, we model this ecosystem by growing glioblastoma into long-term cultured human cortical organoids that contain the major neuroglial cell types found in the cer...

Full description

Bibliographic Details
Main Authors: Mangena, Vamsi, Chanoch-Myers, Rony, Sartore, Rafaela, Paulsen, Bruna, Gritsch, Simon, Weisman, Hannah, Hara, Toshiro, Breakefield, Xandra O, Breyne, Koen, Regev, Aviv, Chung, Kwanghun, Arlotta, Paola, Tirosh, Itay, Suva, Mario L
Other Authors: Massachusetts Institute of Technology. Department of Chemical Engineering
Format: Article
Language:English
Published: American Association for Cancer Research 2024
Online Access:https://hdl.handle.net/1721.1/157902
_version_ 1824458333036216320
author Mangena, Vamsi
Chanoch-Myers, Rony
Sartore, Rafaela
Paulsen, Bruna
Gritsch, Simon
Weisman, Hannah
Hara, Toshiro
Breakefield, Xandra O
Breyne, Koen
Regev, Aviv
Chung, Kwanghun
Arlotta, Paola
Tirosh, Itay
Suva, Mario L
author2 Massachusetts Institute of Technology. Department of Chemical Engineering
author_facet Massachusetts Institute of Technology. Department of Chemical Engineering
Mangena, Vamsi
Chanoch-Myers, Rony
Sartore, Rafaela
Paulsen, Bruna
Gritsch, Simon
Weisman, Hannah
Hara, Toshiro
Breakefield, Xandra O
Breyne, Koen
Regev, Aviv
Chung, Kwanghun
Arlotta, Paola
Tirosh, Itay
Suva, Mario L
author_sort Mangena, Vamsi
collection MIT
description Glioblastoma is characterized by heterogeneous malignant cells that are functionally integrated within the neuroglial microenvironment. Here, we model this ecosystem by growing glioblastoma into long-term cultured human cortical organoids that contain the major neuroglial cell types found in the cerebral cortex. Single-cell RNA-seq analysis suggests that, compared to matched gliomasphere models, glioblastoma cortical organoids (GCO) more faithfully recapitulate the diversity and expression programs of malignant cell states found in patient tumors. Additionally, we observe widespread transfer of glioblastoma transcripts and GFP proteins to non-malignant cells in the organoids. Mechanistically, this transfer involves extracellular vesicles and is biased towards defined glioblastoma cell states and astroglia cell types. These results extend previous glioblastoma-organoid modeling efforts and suggest widespread intercellular transfer in the glioblastoma neuroglial microenvironment.
first_indexed 2025-02-19T04:24:13Z
format Article
id mit-1721.1/157902
institution Massachusetts Institute of Technology
language English
last_indexed 2025-02-19T04:24:13Z
publishDate 2024
publisher American Association for Cancer Research
record_format dspace
spelling mit-1721.1/1579022025-01-05T04:26:05Z Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer Mangena, Vamsi Chanoch-Myers, Rony Sartore, Rafaela Paulsen, Bruna Gritsch, Simon Weisman, Hannah Hara, Toshiro Breakefield, Xandra O Breyne, Koen Regev, Aviv Chung, Kwanghun Arlotta, Paola Tirosh, Itay Suva, Mario L Massachusetts Institute of Technology. Department of Chemical Engineering Glioblastoma is characterized by heterogeneous malignant cells that are functionally integrated within the neuroglial microenvironment. Here, we model this ecosystem by growing glioblastoma into long-term cultured human cortical organoids that contain the major neuroglial cell types found in the cerebral cortex. Single-cell RNA-seq analysis suggests that, compared to matched gliomasphere models, glioblastoma cortical organoids (GCO) more faithfully recapitulate the diversity and expression programs of malignant cell states found in patient tumors. Additionally, we observe widespread transfer of glioblastoma transcripts and GFP proteins to non-malignant cells in the organoids. Mechanistically, this transfer involves extracellular vesicles and is biased towards defined glioblastoma cell states and astroglia cell types. These results extend previous glioblastoma-organoid modeling efforts and suggest widespread intercellular transfer in the glioblastoma neuroglial microenvironment. 2024-12-20T19:50:26Z 2024-12-20T19:50:26Z 2024-10-07 2024-12-20T19:37:16Z Article http://purl.org/eprint/type/JournalArticle https://hdl.handle.net/1721.1/157902 Vamsi Mangena, Rony Chanoch-Myers, Rafaela Sartore, Bruna Paulsen, Simon Gritsch, Hannah Weisman, Toshiro Hara, Xandra O. Breakefield, Koen Breyne, Aviv Regev, Kwanghun Chung, Paola Arlotta, Itay Tirosh, Mario L. Suva; Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer. Cancer Discov 2024. en 10.1158/2159-8290.cd-23-1336 Cancer Discovery Creative Commons Attribution-NonCommercial-NoDerivs https://creativecommons.org/licenses/by-nc-nd/4.0/ application/pdf American Association for Cancer Research American Association for Cancer Research
spellingShingle Mangena, Vamsi
Chanoch-Myers, Rony
Sartore, Rafaela
Paulsen, Bruna
Gritsch, Simon
Weisman, Hannah
Hara, Toshiro
Breakefield, Xandra O
Breyne, Koen
Regev, Aviv
Chung, Kwanghun
Arlotta, Paola
Tirosh, Itay
Suva, Mario L
Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title_full Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title_fullStr Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title_full_unstemmed Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title_short Glioblastoma-cortical organoids recapitulate cell state heterogeneity and intercellular transfer
title_sort glioblastoma cortical organoids recapitulate cell state heterogeneity and intercellular transfer
url https://hdl.handle.net/1721.1/157902
work_keys_str_mv AT mangenavamsi glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT chanochmyersrony glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT sartorerafaela glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT paulsenbruna glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT gritschsimon glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT weismanhannah glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT haratoshiro glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT breakefieldxandrao glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT breynekoen glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT regevaviv glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT chungkwanghun glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT arlottapaola glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT tiroshitay glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer
AT suvamariol glioblastomacorticalorganoidsrecapitulatecellstateheterogeneityandintercellulartransfer