Adaptation for Regularization Operators in Learning Theory

We consider learning algorithms induced by regularization methods in the regression setting. We show that previously obtained error bounds for these algorithms using a-priori choices of the regularization parameter, can be attained using a suitable a-posteriori choice based on validation. In parti...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Caponnetto, Andrea, Yao, Yuan
Muut tekijät: Tomaso Poggio
Kieli:en_US
Julkaistu: 2006
Aiheet:
Linkit:http://hdl.handle.net/1721.1/34217