Adaptation for Regularization Operators in Learning Theory
We consider learning algorithms induced by regularization methods in the regression setting. We show that previously obtained error bounds for these algorithms using a-priori choices of the regularization parameter, can be attained using a suitable a-posteriori choice based on validation. In parti...
Päätekijät: | , |
---|---|
Muut tekijät: | |
Kieli: | en_US |
Julkaistu: |
2006
|
Aiheet: | |
Linkit: | http://hdl.handle.net/1721.1/34217 |