All learning is local: Multi-agent learning in global reward games
In large multiagent games, partial observability, coordination, and credit assignment persistently plague attempts to design good learning algorithms. We provide a simple and efficient algorithm that in part uses a linear system to model the world from a single agent’s limited perspective, and takes...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | en_US |
Published: |
2003
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/3851 |