Combinatorial Preconditioners for Scalar Elliptic Finite-Element Problems
We present a new preconditioner for linear systems arising from finite-element discretizations of scalar elliptic partial differential equations (PDE's). The solver splits the collection $\{K_{e}\}$ of element matrices into a subset of matrices that are approximable by diagonally dominant matri...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Society for Industrial and Applied Mathematics
2010
|
Online Access: | http://hdl.handle.net/1721.1/52300 |