Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier

We report on dependence of conductance and tunnelling magnetoresistance on bias voltage at different temperatures down to 2 K in Co|Al[subscript 2]O[subscript 3](10 Å)|Si(δ)|Al[subscript 2]O[subscript 3](2 Å)|Permalloy magnetic tunnel junctions. Complementary low frequency noise measurements are us...

Full description

Bibliographic Details
Main Authors: Guerrero, R., Aliev, F. G., Villar, R., Santos, Tiffany S., Moodera, Jagadeesh, Dugaev, V. K., Barnas, J.
Other Authors: Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Format: Article
Language:en_US
Published: American Physical Society 2010
Online Access:http://hdl.handle.net/1721.1/58851
https://orcid.org/0000-0002-2480-1211
_version_ 1826200738311700480
author Guerrero, R.
Aliev, F. G.
Villar, R.
Santos, Tiffany S.
Moodera, Jagadeesh
Dugaev, V. K.
Barnas, J.
author2 Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
author_facet Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology)
Guerrero, R.
Aliev, F. G.
Villar, R.
Santos, Tiffany S.
Moodera, Jagadeesh
Dugaev, V. K.
Barnas, J.
author_sort Guerrero, R.
collection MIT
description We report on dependence of conductance and tunnelling magnetoresistance on bias voltage at different temperatures down to 2 K in Co|Al[subscript 2]O[subscript 3](10 Å)|Si(δ)|Al[subscript 2]O[subscript 3](2 Å)|Permalloy magnetic tunnel junctions. Complementary low frequency noise measurements are used to understand the conductance results. The obtained data indicate the breakdown of the Coulomb blockade for thickness of the asymmetric silicon layer exceeding 1.2 Å. The crossover in the conductance, the dependence of the tunneling magnetoresistance with the bias voltage and the noise below 80 K correspond to one monolayer coverage. Interestingly, the zero bias magnetoresistance remains nearly unaffected by the presence of the silicon layer. The proposed model uses Larkin-Matveev approximation of tunneling through a single impurity layer generalized to three-dimensional case and takes into account the variation of the barrier shape with the bias voltage. The main difference is the localization of all the impurity levels within a single atomic layer. In the high thickness case, up to 1.8 Å, we have introduced a phenomenological parameter, which reflects the number of single levels on the total density of silicon atoms.
first_indexed 2024-09-23T11:41:03Z
format Article
id mit-1721.1/58851
institution Massachusetts Institute of Technology
language en_US
last_indexed 2024-09-23T11:41:03Z
publishDate 2010
publisher American Physical Society
record_format dspace
spelling mit-1721.1/588512022-09-27T21:13:26Z Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier Guerrero, R. Aliev, F. G. Villar, R. Santos, Tiffany S. Moodera, Jagadeesh Dugaev, V. K. Barnas, J. Francis Bitter Magnet Laboratory (Massachusetts Institute of Technology) Moodera, Jagadeesh Santos, Tiffany S. Moodera, Jagadeesh We report on dependence of conductance and tunnelling magnetoresistance on bias voltage at different temperatures down to 2 K in Co|Al[subscript 2]O[subscript 3](10 Å)|Si(δ)|Al[subscript 2]O[subscript 3](2 Å)|Permalloy magnetic tunnel junctions. Complementary low frequency noise measurements are used to understand the conductance results. The obtained data indicate the breakdown of the Coulomb blockade for thickness of the asymmetric silicon layer exceeding 1.2 Å. The crossover in the conductance, the dependence of the tunneling magnetoresistance with the bias voltage and the noise below 80 K correspond to one monolayer coverage. Interestingly, the zero bias magnetoresistance remains nearly unaffected by the presence of the silicon layer. The proposed model uses Larkin-Matveev approximation of tunneling through a single impurity layer generalized to three-dimensional case and takes into account the variation of the barrier shape with the bias voltage. The main difference is the localization of all the impurity levels within a single atomic layer. In the high thickness case, up to 1.8 Å, we have introduced a phenomenological parameter, which reflects the number of single levels on the total density of silicon atoms. United States. Office of Naval Research (Grant No. N00014-06-1-0235) National Science Foundation (U.S.) (Grant No. DMR-0504158) Madrid (Spain : Region) (Grant No. P2009/MAT-1726) Spain. Ministerio de Ciencia e Innovación (MICINN) (Grant No. MAT2006-07196) Spain. Ministerio de Ciencia e Innovación (MICINN) (Grant No. MAT2009- 10139) Spain. Ministerio de Ciencia e Innovación (MICINN) (Consolider Grant No. CSD2007-00010) European Science Foundation. EUROCORES Programme (Grant No. 05-FONE-FP-010-SPINTRA) European Science Foundation. Arrays of Quantum Dots adn Josephson Junctions (AQDJJ) programme Fundação para a Ciência e a Tecnologia (FCT) (Grant PTDC/FIS/70843/2006) Poland. Ministry of Science and Higher Education 2010-10-04T16:18:57Z 2010-10-04T16:18:57Z 2010-01 2010-10 Article http://purl.org/eprint/type/JournalArticle 1098-0121 1550-235X http://hdl.handle.net/1721.1/58851 Guerrero, R. et al. "Conductance in Co/Al2O3/Si/Al2O3 permalloy with asymmetrically doped barrier." Physical Review B 81.1 (2010): 014404. © 2010 The American Physical Society https://orcid.org/0000-0002-2480-1211 en_US http://dx.doi.org/10.1103/PhysRevB.81.014404 Physical Review B Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. application/pdf American Physical Society APS
spellingShingle Guerrero, R.
Aliev, F. G.
Villar, R.
Santos, Tiffany S.
Moodera, Jagadeesh
Dugaev, V. K.
Barnas, J.
Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title_full Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title_fullStr Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title_full_unstemmed Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title_short Conductance in Co/Al[subscript 2]O[subscript 3]/Si/Al[subscript 2]O[subscript 3] permalloy with asymmetrically doped barrier
title_sort conductance in co al subscript 2 o subscript 3 si al subscript 2 o subscript 3 permalloy with asymmetrically doped barrier
url http://hdl.handle.net/1721.1/58851
https://orcid.org/0000-0002-2480-1211
work_keys_str_mv AT guerreror conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT alievfg conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT villarr conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT santostiffanys conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT mooderajagadeesh conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT dugaevvk conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier
AT barnasj conductanceincoalsubscript2osubscript3sialsubscript2osubscript3permalloywithasymmetricallydopedbarrier