Global models of document structure using latent permutations

We present a novel Bayesian topic model for learning discourse-level document structure. Our model leverages insights from discourse theory to constrain latent topic assignments in a way that reflects the underlying organization of document topics. We propose a global model in which both topic selec...

Бүрэн тодорхойлолт

Номзүйн дэлгэрэнгүй
Үндсэн зохиолчид: Chen, Harr, Branavan, Satchuthanan R., Barzilay, Regina, Karger, David R.
Бусад зохиолчид: Massachusetts Institute of Technology. Computer Science and Artificial Intelligence Laboratory
Формат: Өгүүллэг
Хэл сонгох:en_US
Хэвлэсэн: Association for Computational Linguistics 2010
Нөхцлүүд:
Онлайн хандалт:http://hdl.handle.net/1721.1/59312
https://orcid.org/0000-0002-2921-8201
https://orcid.org/0000-0002-0024-5847