Lower Bounds on the Rate of Learning in Social Networks
e study the rate of convergence of Bayesian learning in social networks. Each individual receives a signal about the underlying state of the world, observes a subset of past actions and chooses one of two possible actions. Our previous work established that when signals generate unbounded likelihood...
Main Authors: | , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2010
|
Online Access: | http://hdl.handle.net/1721.1/59971 https://orcid.org/0000-0002-1827-1285 https://orcid.org/0000-0002-1470-2148 https://orcid.org/0000-0003-0908-7491 |