An Adaptive Control Technology for Safety of a GTM-like Aircraft
An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified herein. This architecture combines a nominal controller based on an LQR with integral action, and an adaptive controller that accommodates for actuator saturat...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers
2011
|
Online Access: | http://hdl.handle.net/1721.1/60386 https://orcid.org/0000-0002-4354-0459 |
Summary: | An adaptive control architecture for safe performance of a transport aircraft subject to various adverse conditions is proposed and verified herein. This architecture combines a nominal controller based on an LQR with integral action, and an adaptive controller that accommodates for actuator saturation and bounded disturbances. The effectiveness of the baseline controller and its adaptive augmentation are evaluated and compared using a stand-alone control verification methodology. Several failure modes, where an uncertain parameter and a correspondingly critical flight maneuver are paired, are studied. The resilience of the controllers is determined by evaluating the degradation in closed-loop performance that results from increasingly larger uncertainties. Symmetric and asymmetric actuator failures, flight upsets, and CG movements, are some of the uncertainties considered. |
---|