Laboratory Observation of Localized Onset of Magnetic Reconnection

Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong...

Full description

Bibliographic Details
Main Authors: Katz, Noam Karasov, Egedal-Pedersen, Jan, Fox, William R., Le, Ari Yitzchak, Bonde, Jeffrey D., Vrublevskis, Arturs
Other Authors: Massachusetts Institute of Technology. Department of Physics
Format: Article
Language:en_US
Published: American Physical Society 2011
Online Access:http://hdl.handle.net/1721.1/60572
Description
Summary:Magnetic reconnection is a fundamental process in plasmas that results in the often explosive release of stored magnetic energy, but the trigger for its onset is not well understood. We explore this trigger for fast reconnection in toroidal experiments using a magnetic x-type geometry in the strong guide-field regime. We find that the onset occurs asymmetrically: the reconnection begins on one side of the torus and propagates around approximately at the Alfvén speed. The fast reconnection occurs only in the presence of a global plasma mode, which breaks the axisymmetry and enables the current at the x line to decrease sharply. A simple semiempirical model is used to describe the onset’s growth rate.