Sortase-catalyzed transformations that improve the properties of cytokines
Recombinant protein therapeutics often suffer from short circulating half-life and poor stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins, but the methods for attachment...
Main Authors: | , , , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
National Academy of Sciences (U.S.)
2011
|
Online Access: | http://hdl.handle.net/1721.1/65875 https://orcid.org/0000-0002-1090-6071 |
Summary: | Recombinant protein therapeutics often suffer from short circulating half-life and poor stability, necessitating multiple injections and resulting in limited shelf-life. Conjugation to polyethylene glycol chains (PEG) extends the circulatory half-life of many proteins, but the methods for attachment often lack specificity, resulting in loss of biological activity. Using four-helix bundle cytokines as an example, we present a general platform that uses sortase-mediated transpeptidation to facilitate site-specific attachment of PEG to extend cytokine half-life with full retention of biological activity. Covalently joining the N and C termini of proteins to obtain circular polypeptides, again executed using sortase, increases thermal stability. We combined both PEGylation and circularization by exploiting two distinct sortase enzymes and the use of a molecular suture that allows both site-specific PEGylation and covalent closure. The method developed is general, uses a set of easily accessible reagents, and should be applicable to a wide variety of proteins, provided that their termini are not involved in receptor binding or function. |
---|