Variational bayesian inference for point process generalized linear models in neural spike trains analysis

Point process generalized linear models (GLMs) have been widely used for neural spike trains analysis. Statistical inference for GLMs include maximum likelihood and Bayesian estimation. Variational Bayesian (VB) methods provide a computationally appealing means to infer the posterior density of unkn...

Полное описание

Библиографические подробности
Главные авторы: Chen, Zhe, Kloosterman, Fabian, Wilson, Matthew A., Brown, Emery N.
Другие авторы: Massachusetts Institute of Technology. Department of Brain and Cognitive Sciences
Формат: Статья
Язык:en_US
Опубликовано: Institute of Electrical and Electronics Engineers 2012
Online-ссылка:http://hdl.handle.net/1721.1/70598
https://orcid.org/0000-0003-2668-7819
https://orcid.org/0000-0001-7149-3584