Unsupervised Activity Perception in Crowded and Complicated Scenes Using Hierarchical Bayesian Models
We propose a novel unsupervised learning framework to model activities and interactions in crowded and complicated scenes. Hierarchical Bayesian models are used to connect three elements in visual surveillance: low-level visual features, simple "atomic" activities, and interactions. Atomic...
Main Authors: | , , |
---|---|
Other Authors: | |
Format: | Article |
Language: | en_US |
Published: |
Institute of Electrical and Electronics Engineers (IEEE)
2012
|
Online Access: | http://hdl.handle.net/1721.1/71587 https://orcid.org/0000-0002-6192-2207 |