Fast Learning by Bounding Likelihoods in Sigmoid Type Belief Networks
Sigmoid type belief networks, a class of probabilistic neural networks, provide a natural framework for compactly representing probabilistic information in a variety of unsupervised and supervised learning problems. Often the parameters used in these networks need to be learned from examples....
Main Authors: | , , |
---|---|
Language: | en_US |
Published: |
2004
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/7189 |