Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently remov...
Main Authors: | , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
2004
|
Subjects: | |
Online Access: | http://hdl.handle.net/1721.1/7373 |
_version_ | 1826217296126803968 |
---|---|
author | Isaacson, David M. Taraschi, G. Pitera, Arthur J. Ariel, Nava Fitzgerald, Eugene A. Langdo, Thomas A. |
author_facet | Isaacson, David M. Taraschi, G. Pitera, Arthur J. Ariel, Nava Fitzgerald, Eugene A. Langdo, Thomas A. |
author_sort | Isaacson, David M. |
collection | MIT |
description | We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface. |
first_indexed | 2024-09-23T17:01:10Z |
format | Article |
id | mit-1721.1/7373 |
institution | Massachusetts Institute of Technology |
language | English |
last_indexed | 2024-09-23T17:01:10Z |
publishDate | 2004 |
record_format | dspace |
spelling | mit-1721.1/73732019-04-11T02:45:20Z Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer Isaacson, David M. Taraschi, G. Pitera, Arthur J. Ariel, Nava Fitzgerald, Eugene A. Langdo, Thomas A. layer transfer wafer bonding strained silicone SiGe graded buffer We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface. Singapore-MIT Alliance (SMA) 2004-12-10T14:27:11Z 2004-12-10T14:27:11Z 2005-01 Article http://hdl.handle.net/1721.1/7373 en Advanced Materials for Micro- and Nano-Systems (AMMNS); 586563 bytes application/pdf application/pdf |
spellingShingle | layer transfer wafer bonding strained silicone SiGe graded buffer Isaacson, David M. Taraschi, G. Pitera, Arthur J. Ariel, Nava Fitzgerald, Eugene A. Langdo, Thomas A. Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title | Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title_full | Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title_fullStr | Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title_full_unstemmed | Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title_short | Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer |
title_sort | strained silicon on silicon by wafer bonding and layer transfer from relaxed sige buffer |
topic | layer transfer wafer bonding strained silicone SiGe graded buffer |
url | http://hdl.handle.net/1721.1/7373 |
work_keys_str_mv | AT isaacsondavidm strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer AT taraschig strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer AT piteraarthurj strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer AT arielnava strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer AT fitzgeraldeugenea strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer AT langdothomasa strainedsilicononsiliconbywaferbondingandlayertransferfromrelaxedsigebuffer |